Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 5, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Meka, Raghu (Ed.)There has been substantial recent concern that automated pricing algorithms might learn to collude Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors if they ever defect from a set of supra-competitive prices, and these strategies can be automatically learned. But threats are anti-competitive on their face. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to correctly optimize their payoff. Is this intuition correct? Would explicitly preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can robustly emerge even when both players are using algorithms which do not explicitly encode threats, and which optimize for their own revenue. Since deploying an algorithm is a form of commitment, we study sequential Bertrand pricing games (and a continuous variant) in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would - and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of algorithmic collusion; may need to be expanded, to include strategies without explicitly encoded threats.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            We study the problem of online prediction, in which at each time step t, an individual xt arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.more » « less
- 
            Individual probabilities refer to the probabilities of outcomes that are realized only once: the probability that it will rain tomorrow, the probability that Alice will die within the next 12 months, the probability that Bob will be arrested for a violent crime in the next 18 months, etc. Individual probabilities are fundamentally unknowable. Nevertheless, we show that two parties who agree on the data—or on how to sample from a data distribution—cannot agree to disagree on how to model individual probabilities. This is because any two models of individual probabilities that substantially disagree can together be used to empirically falsify and improve at least one of the two models. This can be efficiently iterated in a process of “reconciliation” that results in models that both parties agree are superior to the models they started with, and which themselves (almost) agree on the forecasts of individual probabilities (almost) everywhere. We conclude that although individual probabilities are unknowable, they are contestable via a computationally and data efficient process that must lead to agreement. Thus we cannot find ourselves in a situation in which we have two equally accurate and unimprovable models that disagree substantially in their predictions—providing an answer to what is sometimes called the predictive or model multiplicity problem.more » « less
- 
            We make a connection between multicalibration and property elicitation and show that (under mild technical conditions) it is possible to produce a multicalibrated predictor for a continuous scalar property if and only if is elicitable. On the negative side, we show that for non-elicitable continuous properties there exist simple data distributions on which even the true distributional predictor is not calibrated. On the positive side, for elicitable , we give simple canonical algorithms for the batch and the online adversarial setting, that learn a -multicalibrated predictor. This generalizes past work on multicalibrated means and quantiles, and in fact strengthens existing online quantile multicalibration results. To further counter-weigh our negative result, we show that if a property is not elicitable by itself, but is elicitable conditionally on another elicitable property , then there is a canonical algorithm that jointly multicalibrates and ; this generalizes past work on mean-moment multicalibration. Finally, as applications of our theory, we provide novel algorithmic and impossibility results for fair (multicalibrated) risk assessment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available